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Abstract

In traditional single-species ®sh stock assessment natural mortality is considered constant, independent of age or size. It is

argued that predation mortality is generally related to prey size, that it decreases with increasing size and that such size-

speci®c signals can best be detected in stocks that are close to a virgin state. Size-speci®c natural mortality rates of westcoast

steenbras (Lithognathus aureti) were determined by using length frequencies of rod-caught ®sh from a lightly exploited and

closed population at Meob Bay, Namibia. It was assumed that natural mortality is inversely proportional to (body) length and

approaching a constant minimum rate (M1) as the ®sh grow bigger. Simple and new length-based catch curve methods were

developed using the traditional simpli®cation of neglecting variations in length at age. The von Bertalanffy growth parameters

for annual mean growth as well as the coef®cient of variation of length at age were estimated from analyzing age-length data.

A simple deterministic simulation model was developed to examine the robustness of the methods and the impact of

variability in individual growth. The model assumes that ®sh grow with a constant coef®cient of variation in length at age. The

simple method works within 10% precision criteria in most real cases. It is shown that overestimating mean length at old age

��L1� counteracts the effects of overlapping lengths for consecutive age groups. This fact can be used to estimate the

fundamental mortality-to-growth ratio (M1/K) without any prior knowledge on growth. The application of M1 for steenbras

to obtain size-speci®c natural mortality rate for silver kob (Argyrosomus inodorus), as an input parameter for virtual

population analysis, is also proposed. # 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although the instantaneous rate of natural mortality

(M) is a key factor in ®sh population dynamics, this is

dif®cult to estimate accurately, particularly if little

information is available on the biology of the ®sh.

Natural mortality accounts for decreasing ®sh stock

abundance potentially due to numerous other causes

apart from ®shing, including e.g. predation, cannibal-

ism, disease, spawning stress, starvation and senes-

cence.

As direct measurements are usually impossible to

obtain, measurable quantities that are assumed pro-

portional to M are often used for the estimation of

natural mortality. A number of methods to determine
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an instantaneous rate of size-independent natural mor-

tality have been suggested in the literature, most using

life-history parameters (e.g. Beverton and Holt, 1959;

Rikhter and Efanov, 1976; Pauly, 1980; Gunderson

and Dygert, 1988; Jensen, 1996; Lorenzen, 1996). In a

review on the estimation of size-independent natural

mortality rate in ®sh stocks, Vetter (1988) concluded

that M is far from constant for many ®sh stocks and

this within-stock variability should not be ignored as

the standard ®shery models can be sensitive to the

variations in M. Changes in natural mortality rate with

body size of ®sh within single ®sh stocks have been

discussed by e.g. Ricker (1969), Ware (1975) and

Peterson and Wroblewski (1984). Beyer (1989);

Example 10, simply considered mass balance in the

predation-food-consumption process and deduced that

®sh growing according to the von Bertalanffy growth

equation (VBGE) was consistent with predation mor-

tality being inversely proportional to length, L, i.e.

M�L� � M1
L1
L
; (1)

where L1 as usual, denotes the mean length of

in®nitely old ®sh and M(L1)�M1 similarly denotes

the mortality (predation) of in®nitely old ®sh ± a

notation we retain in the present study.

Particularly in slow growing long-lived species

the usual assumption in single-species ®sh stock

assessment that natural mortality remains constant

for all age (size) groups appears to be unreasonable.

The simple assumption that natural mortality rate

is inversely proportional to body length was adopted

as an attractive and promising hypothesis. This study

is an approach to quantify size-speci®c natural mor-

tality for westcoast steenbras (Lithognathus aureti)

and further apply it to silver kob (Argyrosomus

inodorus).

In situations of zero ®shing mortality, new linear-

ized length-based catch curves are derived from ®rst

principles to estimate M/K in the case of size-inde-

pendent natural mortality and M1/K in the case of size

dependent mortality according to Eq. (1), where K as

usual denotes the curvature parameter in VBGE.

These simple methods require knowledge of L1.

The VBGE parameters for mature steenbras are

obtained from age-length data and further discussed

in the light of mark-recapture data. It is of note that our

mortality analysis is developed from the fundamental

basis of traditional ®sh population dynamics, i.e. a

year-class is considered to comprise identical ®sh.

This is generally a fallacy because it is well-known

that ®sh of the same age may differ considerably in

size. It is therefore not clear how the length-based

methods perform as the coef®cient of variation in

length at age (CV) increases thereby creating a con-

siderable amount of overlap in the size-range of

consecutive age groups. This and related issues of

robustness and bias are examined using a deterministic

simulation model assuming that the individual ®sh of a

cohort grow according to VBGE with the same K and

with the same speci®c growth rate (in length), i.e. the

constant CV-growth model of Beyer and Lassen

(1994). The model is also used to demonstrate the

important role of the mortality-to-growth ratio for

length-based population dynamics.

2. Materials and methods

This study was undertaken in the Meob Bay area

(248310S, 148360E) (Namibia, south-western Africa),

situated in the Namib Naukluft Park which falls under

the jurisdiction of the Ministry of Environment and

Tourism. The Namibian Sea Fisheries Act (no. 29 of

1992) prohibits recreational ®shing in restricted areas

and only ®shing for scienti®c purposes is allowed. The

Meob Bay area was therefore a unique study area as no

®shing effort and hence zero ®shing mortality (F)

(except for some biological sampling) occur. In the

years 1995±1997, regular surveys were undertaken at

Meob Bay by the Line®sh section as part of the

Namibian Fish Tagging Project (NAFTAP). Of the

approximately 16 400 steenbras that were marked and

released at Meob Bay during the period 1992±1997,

146 were recaptured within this area and only eight

ranging from 35.5 to 70 cm fork length (FL) were

recaptured south of Walvis Bay in the Sandwich area

(238080S, 148260E) (which lies approximately 160 km

from Meob Bay). As only 5.5% of westcoast steenbras

were recaptured outside the Meob Bay area, the

population under investigation was treated as being

closed and unexploited. Note that this 5.5% is most

certainly an overestimate as the ®shing pressure in the

Sandwich area is much higher than in the Meob Bay

area because this is open to angling for the general

public.
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Westcoast steenbras were caught from the shore

with rod and reel and measured to the nearest 0.5 cm

FL. Length frequency distributions in 2.5 cm classes

are shown in Fig. 1. Preliminary experimentation with

hook-size selectivity was also carried out (Fig. 2).

2.1. Determination of growth parameters for

westcoast steenbras

Estimated values for the von Bertanlanffy growth

parameters are needed for the length-based mortality

analysis, however, no useful information has been

reported in the literature on the growth of the west-

coast steenbras. A preliminary growth analysis was

carried out by reading ring structures on otoliths

following the method used by Buxton and Clarke

(1989) and Benneth (1993) (Fig. 3). VBGE para-

meters for mean annual growth were estimated from

these age-length data by non-linear least square

(L1�70 cm, K�0.083 yrÿ1 and t0�ÿ2.4 yr;

Fig. 3(a)). The coef®cient of variation of length at

age, 
�CV(L|age), was estimated from the relative

Fig. 1. Length frequency distributions of L. aureti sampled at Meob bay, Namibia, with rod and reel from the shore throughout 1995

(n95�4124), 1996 (n96�4183) and 1997 (n97�7867). (Shown lengths refer to lower class limits; 2.5 cm classes).
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residuals (
�0.116; Fig. 3(b)). Assuming L1 to be

known, the mark-recapture data were also used to

obtain estimates of K independently of t0, the apparent

age of zero length. This analysis is included only as a

preliminary investigation as more detailed considera-

tions and estimation of growth are outside the scope of

this paper. The data included length when ®rst caught

(L1), length at recapture (L2) and days free (�t). To

avoid considerable bias on the estimation of the mean

annual K due to e.g. seasonality in growth, ®sh which

had spent less than one year in freedom were excluded

from the analysis. Of the 89 recaptures recorded, 40

provided such accurate lengths at mark-recapture with

�t�1 yr, and this data was used to estimate individual

K's from VBGE, i.e. in the present application,

K � 1

�t
ln

L1 ÿ L1

L1 ÿ L2

� �
: (2)

Fig. 4 shows K-values obtained in this way by

assuming that the (unknown) growth trajectories of

the individual ®sh could adequately be described by

the same L1�70 cm and produced a mean value of
�K � 0:072� 0:006�SE� yrÿ1, (n�40). Omitting three

possible outliers (exceeding the 99.5% probability

level estimated by �K � 2:576 SD, (n�37)) resulted

in �K � 0:064� 0:004�SE� yrÿ1 (n�37). Repeating

the procedure for L1 values in the range 60±80 cm

resulted in mean K values that can be approximately

described by �K � 334 Lÿ2
1 , (n�40). When individual

L1's instead were chosen at random from a normal

distribution with mean 70 cm and 
�0.1, we obtained
�K � 0:070 and a mean standard deviation of 0.043

based on 200 simulations. It should be noted that the

maximum length of steenbras recorded in 1995±1997

was Lmax�80 cm (n�16 174).

2.2. Estimating size-independent natural mortality

(M)

In establishing the general basis, the impact of a

constant instantaneous rate of total mortality,

Z�F�M, was ®rst considered (F�®shing mortality).

The traditional cohort assumption of a one-to-one

relationship between size and age (i.e. 
�0) further-

more implies that the number of ®sh alive may be

considered a function of length, N(L), instead of age

(or of time). Dividing the rate of change in numbers,

dN/dt�ÿZN, by the rate of growth, dL/dt�K(L1ÿL),

gives the length-based starting point,

dN�L�
dL

� ÿ Z

K

N�L�
L1 ÿ L

: (3)

Integrating this (physiological) rate of population

decline over the length interval from L0 to L, assuming

constant parameters Z, K and L1, yields the length-

based survivorship (Beyer, 1989),

N�L� � N�L0� L1 ÿ L

L1 ÿ L0

� �Z=K

;

Z � F �M; L0 � L � L1: (4)

Thus in the case of constant mortalities independent

of length, the fraction of ®sh surviving, while growing

Fig. 2. Results of pilot hook selectivity experiment. An equal

number of randomly selected fishermen (six per hook-size), with

approximately the same fishing experience, were fishing for two

sessions of 5 h each in the same area using the same bait. Catch in

numbers of steenbras with the various hook-sizes used in the

experiment are shown; arrows indicate mean lengths. (Shown

lengths refer to lower class limits; 2.5 cm classes).
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from a (constant) length L0 to some length L, is

obtained as the length-ratio of potential growth span

in the square bracket to the power of Z/K and equals

the usual exponential survivorship, exp(ÿ Z�t), if �t

represents the time required to grow from L0 to L

(according to VBGE). L0 was obtained at the length at

full recruitment to the ®shery. The length-based begin-

ning point for deriving the linearized catch curve is

Fig. 3. Otolith readings of steenbras (L. aureti) caught in Meob bay, Namibia, in 1996 (n�282). (a) Plot with estimated von Bertalanffy mean

growth curve. Stipled curves indicate approximate 95% confidence intervals for length at age estimated as mean length multiplied by

(1�2�
). (b) Residuals relative to mean length vs. age. The constant coefficient of variation in length at age, 
, is estimated as the standard

deviation of these relative residuals.

Fig. 4. Single fish estimates of K from mark-recapture data of steenbras (L. aureti) with one year or more in freedom and assuming

L1�70 cm for all fish (n�40). The stipled line shows the average omitting the three possible outliers (which are denoted by triangles).
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similarly derived from dividing the catch rate, dC/

dt�FN, by the growth rate, i.e.

dC

dL
� F

K

N�L�
L1 ÿ L

: (5)

Considering this (physiological) catch rate at the

mid-point, �L � �L1 � L2�=2, of a length class to equal

C(L1,L2)/�L, the catch from that length class divided

by the class length (�L), and inserting the survivor-

ship, Eq. (4), gives in a ®rst approximation that

C�L1; L2�=�L / �L1 ÿ �L�Z=Kÿ1:

This proportionality captures the essence of Eq. (5)

when recruitment, N0�N(L0), to size L0, and all

parameters of growth and mortalities can be consid-

ered constant implying a steady-state situation. In the

present application to the closed and unexploited

population of westcoast steenbras inhabiting Meob

Bay, C and F are referred to as the catch and ®shing

mortality (F�f, which is very small compared to M)

for all the surveys. Hence, considering �L constant

and taking logarithms gives the length-based catch

curve (Beyer, 1989),

ln Ci � constant� �M=K ÿ 1� ln�L1 ÿ �Li�; (6)

where index i refers to length class no i. Thus,

provided that the mean annual growth parameters,

K and L1, are known, an estimate of size-independent

natural mortality for steenbras could be obtained from

linear regression with log to catch per length class as

dependent variable and log potential growth span as

explanatory variable.

2.3. Estimating natural mortality of infinitely old fish

(M1)

In more realistic natural mortality scenarios where

smaller ®sh are gradually exposed to higher predation

mortalities than bigger ®sh, the decline of numbers of

®sh as they increase in length is no longer described by

Eq. (3), which is only valid for constant mortality. It

is, however, possible to relate M as obtained from the

estimation procedure in Eq. (6) to M1 for old and big

®sh (Section 3.2 and Appendix A). To establish a

correct basis for estimating M1 in the case of natural

mortality being inversely proportional to length, the

®rst step taken was to modify total mortality according

to Eq. (1):

Z � F �M1L1=L: (7)

Inserting this expression for Z in Eq. (3), the new

length-based survivorship is again derived from sim-

ple integration (Beyer, 1989),

N�L� � N�L0� L1 ÿ L

L1 ÿ L0

� �Z1=K
L0

L

� �M1=K

;

Z1 � F �M1; L0 � L � L1: (8)

Thus the impact of natural mortality being inversely

proportional to length is that the number of ®sh

attaining length L is reduced by the survival factor

�L0=L�M1=K
compared to the situation of a constant Z

equal to the minimum mortality level, Z1. Note again

that Z1 in Eq. (8) can be replaced by M1 as presently

there is almost no ®shing on the population. Eq. (5) for

the physiological catch rate with constant (size-inde-

pendent) ®shing mortality is still valid for this or any

other case of size-dependent natural mortality as long

as the appropriate survivorship is used for the survi-

vors N(L). A similar expression of proportionality for

steady-state situations could, therefore, be obtained

but modi®ed according to the additional survival

factor, i.e.

C�L1; L2�=�L / �L
ÿM1=K�L1 ÿ �L�M1=Kÿ1

� �L
ÿ1�L1=�Lÿ 1�M1=Kÿ1:

Multiplying with �L, taking logarithms and assum-

ing constant class length, a new linear regression was

obtained,

ln�Ci
�Li� � constant � �M1=K ÿ 1� ln�L1=�Li ÿ 1�:

(9)

This constitutes a very simple basis for estimating

the natural mortality of (in®nitely) old ®sh, M1, when

natural mortality increases for the younger and smaller

®sh in inverse proportion to decreasing length

(Eq. (1)). Assuming again the mean annual growth

parameters, K and L1, are known, M1 for westcoast

steenbras could therefore be obtained from linear

regression using log to catch�midlength as dependent

variable and log to the relative potential growth span

as explanatory variable, i.e. log(max mean length/

midlengthÿ1)�log(potential growth span/midlength).
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2.4. Simulation model of mortality regimes with

individual growth variation

A deterministic simulation programme was devel-

oped using simple (EXCEL) spreadsheets. Input para-

meters for growth are ®rst L1, K and t0 for specifying

mean annual VBGE, and secondly the constant coef-

®cient of variation in length at age, 
, for quantifying

the combined effect of individual growth variation and

an extended spawning season. The mortality regime

considered is one of constant (size-independent) mor-

tality, M, or one of mortality decreasing in inverse

proportion to increasing length according to Eq. (1)

and speci®ed by M1. Selection is quanti®ed by a

standard S-shaped logistic curve (e.g. Sparre and

Venema, 1998) speci®ed by the length at 50% selec-

tion, L50, and the parameter r of selection range:

S�L� � 1=�1� exp�ÿr�Lÿ L50���; r � 2 ln 3=SR;

(10)

where SR is the selection range.

Starting with the ®rst midlength, �L1, and using the

class interval, �L, the basic idea is to calculate the

average length composition of the population of steen-

bras in a speci®c year by adding the contributions from

individual age groups. The historical series of annual

recruitment, Ri, (i�0,1,2,. . .), to age zero constitutes

the remaining input parameters. Suppose, as an exam-

ple, 1996 is the year considered. If R0�10 000 in the

model then R1996 age 0�10 000 ®sh of age zero are

recruited to the population at the beginning of 1996.

The individual lengths of these ®sh are considered

normally distributed with mean length Lage 0�
L1(1ÿexp(Kt0)) and standard deviation 
�Lage 0.

At the end of 1996 the survivors of these ®sh have

grown to mean length Lage 1�L1(1ÿexp(ÿK(1ÿt0)))

and their standard deviation in length has similarly

increased to 
�Lage 1 (thereby maintaining the con-

stant CV�
). To simplify the mortality calculations

under the size-speci®c regime, the ®sh are considered

exposed to a constant rate of natural mortality

throughout 1996 which equals the rate, Eq. (1), using

the mean length of the ®sh in the middle of the year. In

the present application the model is used only to

simulate steady-state conditions so all Ri's are basi-

cally considered equal. For example, R36�10 000

implies that also 10 000 ®sh were recruited at age

zero in 1960 of which only R1996 age 36�10 000

exp(ÿCUM36) survive to age 36 years and are

recruited to the population at the beginning of

1996. Here CUM36 denotes the cumulative mortality

over the past 36 years calculated as the sum of the 36

annual levels (the ®rst of which is described above).

The recruits, R1996 age 36, are normally distributed with

mean length Lage 36�L1(1ÿexp(ÿK(36ÿt0))) and

standard deviation 
�Lage 36. During 1996 these

big ®sh will grow less than one length class, i.e. such

old cohorts will spread out over a number of length

classes which is determined entirely by the indi-

vidual variability in size speci®ed by 
.

The calculations are done on a monthly basis. For

each age group the mean annual number of live ®sh in

a month is derived and these ®sh are considered

normally distributed according to the common CV

(�
) and the mean length attained at the midpoint of

that month. Using this normal distribution (for each

age group and month in the year considered), the

exact proportion of ®sh which belongs to each length

class is calculated as the difference between the

cumulative normal distribution function at the upper

and lower class limits of each class. Multiplying with

the mean annual number of ®sh (per age group and

month) and adding up (over months and age groups)

then gives the complete (annual) length composition

for the population. The simulated length frequencies

for the sample are obtained by multiplying these

population frequencies with the selectivities,

Eq. (10), calculated at the class midpoints. These

sample frequencies represent the Ci's in the linearized

length-based catch curves, Eqs. (6) and (9), and the

programme was ®nalized by using the simulated

sample for these regressions. Fifty age groups were

used and the programme has been tested in various

ways to ensure suf®cient precision and accuracy for

the present application.

3. Results

3.1. Quantification of growth

The mean growth curve for the individuals com-

prising a cohort of steenbras, �L as a function of age

t, is considered described by VBGE with para-

meters estimated from the (non-linear) least square

®t to the age-length data (Fig. 3(a)), i.e.
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�L1 � 70 cm; K � 0:083 yrÿ1 and t0�ÿ2.4 yr, so

�L � 70�1ÿ exp�ÿ0:083�t � 2:4���: (11)

This mean growth curve did not change if estima-

tion instead was done by minimizing the relative

residuals squared. It could not be rejected that the

relative residuals were normally distributed

(P�0.05, �2-test) with standard deviation 
�0.116

(Fig. 3(b)).

Assuming L1�70 cm resulted in �K � 0:072 yrÿ1

using all 40 mark-recapture data for one year or longer

in freedom. One or two of the three possible outliers

(found outside the estimated 0.5% and 99.5% prob-

ability levels; Section 2.1 and Fig. 4), however, repre-

sent outlier values in the present data. This is because

the Poisson probability, P(X�3|��0.4)�0.8%, of get-

ting three or more values when the expected value is

��40�0.01�0.4, is considerably smaller than 5%.

Omitting one outlier yielded �K � 0:069� 0:005 yrÿ1

�SE�, (n�39). This estimate includes ®sh which had

spent an uneven number of seasons in freedom. Con-

sidering data for two or more years in freedom the

most reliable, assuming a seasonal K-change of�30%

and, applying 10% precision criteria resulted in 11
2

yr

as the minimum accepted time spent in freedom. Of

the 40 recaptures previously considered (�t�1 yr), 19

met this criterion (�t � 11
2

yr; Table 1), including the

three outliers, and omitting one outlier yielded
�K � 0:083� 0:007 yrÿ1�SE�, (n�18).

3.2. Estimation of natural mortality

Adding numbers at length from Fig. 1, the max-

imum frequency of the total number of westcoast

steenbras caught in 1995±1997 occurs at the

(2.5 cm) length class starting at 40 cm. This pooled

data from the next class onwards (i.e. L�42.5 cm) was

considered representative for the length frequencies in

the population (i.e. virtually 100% selection) and used

for the estimation of natural mortality assuming all

®sh grow with L1�70 cm and K�0.083 yrÿ1. Using

the linearized catch curve in Eq. (6) the estimate of the

(maximum) size-independent natural mortality

yielded M�0.41 yrÿ1 (Fig. 5(a)). Assuming size-

dependent mortality we obtained M1�0.285 yrÿ1

(Fig. 5(b)) using the linearized catch curve in

Eq. (9). These estimates increased slightly if the

length frequencies for L�42.5 cm alternatively were

pooled on a percentage basis (i.e. M�0.42 and

M1�0.294 yrÿ1 from equivalent plots (not shown)

to Fig. 5 by giving the tails (L�42.5 cm) of the annual

length frequencies equal weight). Note that only ®ve

points were used for the regressions. This is mainly

because the larger the ®sh the more deviation from a

straight line is anticipated due to a considerable

variation in length at age (Section 3.4). The usual

uncertainty, however, due to low catches of large ®sh

also plays a role. This can easily be illustrated. Of the

total catch of n�16 174 ®sh, 272 represent the last of

the ®ve points included (i.e. length class starting at

52.5 cm). The number of ®sh in such a length class (L)

can be considered binomially distributed, Bin(n, pL),

with mean npL and variance npL(1ÿpL). We estimate

pL�272/16174, so the standard deviation of the num-

ber of ®sh in the length class becomes ca. 16. Thus a

95% con®dence interval for this number is approxi-

mately (240, 304). Introducing just one change due to

random chance by replacing the observed catch (272)

for the last point by the outer limit (304) will cause a

slight reduction in the slope of the regression line in

Fig. 5(b) and the new estimate, M1�0.274, represents

Table 1

Mark-recapture data for steenbras with �t�548 days free

L1 L2 �L �t K

27 35 8 704 0.107

27 35 8 900 0.083

28.5 35.5 7 929 0.073

28.5 35.5 7 940 0.072

31 38 7 848 0.085

31.5 37.2 5.7 936 0.062

32.5 38 5.5 937 0.062

33 40.5 7.5 1159 0.071

33 37 4 691 0.060

33.5 38 4.5 912 0.053

34.5 40.5 6 772 0.088

35 39.5 4.5 603 0.083

35 42 7 1162 0.070

35 41.8 6.8 847 0.093

35 42 7 891 0.091

38 41 3 888 0.040

45 53 8 968 0.145

32 40.5 8.5 581 0.159

36 46 10 658 0.193

Length when first caught (L1), length at recapture (L2) and growth

(�L) are given in cm. Single fish estimates of the VBGE parameter

K (yrÿ1) are all based on L1�70 cm. Possible outliers at the

bottom.
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a reduction of 4%. Similarly the con®dence interval

for the number of ®sh representing the ®rst point (i.e.

length class starting at 42.5 cm) becomes (1627, 1783)

due to random chance. It is likely, however, that the

catch in this length class, which would truly re¯ect the

population in the sea, should be even higher due to

selection (Section 3.3). With L50�38 cm and

r�0.5 cmÿ1, Eq. (10) yields 1/S(43.75)�1.056 and

raising the catch by this factor gives 1800 ®sh for

the ®rst point included in the analysis. Introducing

instead this change causes a slight increase in the slope

of the regression line in Fig. 5(b) and the new esti-

mate, M1�0.290, represents an increase of 2%.

It is of note that the estimates of M and M1 from

Fig. 5 are consistent with each other in the following

sense. If the method of constant M is (incorrectly) used

in a size-dependent mortality scenario, which is truly

speci®ed by M1, then

M1 � M�Lrepr=L1; (12)

where M�0.41 yrÿ1 is the estimate of a constant

mortality obtained by the regression in Eq. (6) using

a length range which is represented by �Lrepr �
48:75 cm, the midlength of that length range (Appen-

dix A).

The results suggest the size-speci®c mortality

model, Eq. (1),

M�L� � 20=L; L1 � 70 cm; M1 � 0:29 yrÿ1;

(13)

where M(L) is the instantaneous rate of natural mor-

tality (yrÿ1) for steenbras of length L (cm).

3.3. Estimation of the resultant ogive from length-

based catch curve

The result of applying the Pauly (1984a) method to

length-based catch curves for a size-dependent mor-

tality regime is a new method for estimating the

resultant selection ogive, Sres(L). The idea is that

the difference between the predicted catch (deter-

mined by the extension of the regression line towards

the smaller ®sh (i.e. to the right on Fig. 5(b)) and the

actual numbers should represent the ogive resulting

from the combined effect of recruitment and gear

(hook) selectivity (Pauly, op.cit.). Denoting the inter-

cept in the regression, Eq. (9), by `a' the predicted

catch in length class no. i (assuming 100% selection

under steady-state conditions), Cpred, i, is determined

from

Cpred;i
�Li � exp�a��L1=�Li ÿ 1�M1=Kÿ1:

Hence, from the condition that the actual catch

Ci�Cpred,iSres,i the resultant ogive in the size-depen-

dent mortality scenario is obtained as

Sres;i � Ci exp�ÿa��Li�L1=�Li ÿ 1�1ÿM1=K : (14)

Fitting the logistic curve in Eq. (10), Sres(L), to

these class points for the resultant ogive (using stan-

dard non-linear least square) yields L50�38.5 cm and

r�0.4 cmÿ1 for all 1995±1997 data (Fig. 6). If catch

data for 1997 is omitted L50 decreases slightly but r

increases to 0.55 cmÿ1 (Fig. 6 top). Both sets of

estimates are based on M1�0.285 yrÿ1,

K�0.083 yrÿ1 and L1�70 cm.

Fig. 5. Length-based catch curve analyses for the estimation of

natural mortality for steenbras (L. aureti) in Meob Bay, Namibia,

using pooled length frequencies of rod-caught fish in 1995±1997

(C in %) and assuming L1�70 cm. The (open circle) points used

for regression analyses represent the length range 42.5±55 cm.

Note small fish are to the right and big fish to the left in the

plots: (a) constant (size-independent) mortality analysis, Eq. (6):

y�3.9043xÿ10.338 (n�5, R2�0.99), i.e. M�0.407 yrÿ1 for K�
0.083 yrÿ1; (b) size-dependent mortality analysis, Eq. (9): y�
2.4296x�7.4696 (n�5, R2�0.99), i.e. M1�0.285 yrÿ1 for

K�0.083 yrÿ1.
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3.4. Robustness and bias of mortality estimation

methods

If not speci®ed otherwise results in this section refer

to steady-state calculations with the simulation model

based on the steenbras related parameter set

L1�70 cm, K�0.083 yrÿ1, r�0.5 cmÿ1, L50�
38 cm, M1�0.30 yrÿ1 for the size-speci®c mortality

regime and M�0.4 yrÿ1 for the constant (size-inde-

pendent) mortality regime. The mortality considera-

tions are independent of the constant annual

recruitment level since catches in numbers at length

(2.5 cm classes) are calculated in percentages. Note

also that the mortality estimates are independent of

whether t0�ÿ2.4 yr or say, t0�0 yr. The variation in

length at age as expressed by the constant coef®cient

of variation, 
�CV(L|age), constitutes a key para-

meter for method performance and population

dynamics.

3.4.1. Method performance in the steenbras case

The methods are producing precise and accurate

estimates of mortality, M1�0.30 yrÿ1 (Fig. 7(a)) and

M�0.40 yrÿ1 (Fig. 7(c)), when the underlying

assumption of negligible variation in length at age

is ful®lled. The ®rst (low) point on these graphs is

somewhat to the left of the regression lines because of

too large class interval. These points represent highly

left-screwed distributions within the length class start-

ing at 67.5 cm and ending at L1�70 cm, which

simply are poorly represented by the class midpoint

(68.75 cm) because no ®sh grow beyond L1 when


�0. Moving the points ca. 0.25 cm down (to

L�68.5 cm) place them on the lines in the ®gures.

Using the wrong estimation method transforms the

line into a convex curve (Fig. 7(b)) or a concave curve

(Fig. 7(d)) depending on whether the true mortality

regime is governed by the M1-scenario or the constant

M-scenario (Appendix A). This results in an over-

estimate (39%; M�0.42, Fig. 7(b)) or an underesti-

mate (29%; M1�0.28, Fig. 7(d)) of the mortality for

large ®sh. Unbiased estimates, however, can be

obtained by using Eq. (12) and Lrepr�50 cm (Appen-

dix A). Note that the concave shape of the points in

Fig. 7(d) is not very apparent because the ®rst point

should be moved somewhat to the right.

In the steenbras case, the coef®cient of variation in

length at age is not zero (
�0; Fig. 7) but almost 12%

(
�0.116; Fig. 8). Catches in numbers at age are

spread out over several length classes with a consider-

able overlap for consecutive age groups and ®sh grow

beyond L1. The ®rst points (for large ®sh) deviate the

most from a straight line and convex catch curves are

formed in all cases (Fig. 8). Both methods under-

estimate mortality (ca. 10%, M1�0.27, Fig. 8(a);

vs. 15%, M�0.34, Fig. 8(c)). Applying the wrong

method gives results (M�0.37, Fig. 8(b); M1�0.24,

Fig. 8(d)) that are consistent with these biased mor-

tality estimates (according to Eq. (12)).

Note that when 
 increases (as from Fig. 7 to

Fig. 8), the fact that the mortality analyses are

restricted to ®sh<L1 will cause catch at length to

decrease rather than to increase. The development of

the convex catch curves (Fig. 8) must therefore be

caused by an interplay between mortality and growth

(including individual variability). In the present cases

of high mortality-to-growth ratios, M1/K�3.6 and

M/K�4.8, occurring simultaneously with a large

Fig. 6. Estimation of the resultant selection ogive, Sres(L), for the

rod-and-reel fishery of steenbras (L. aureti) in Meob Bay, Namibia,

from length-based catch curve analysis in a size-dependent

mortality regime (M1�0.285 yrÿ1, K�0.083 yrÿ1, L1�70 cm).

Points represent (resultant) selection by length obtained as the ratio

of number of fish caught to the predicted number had the selection

been 100% (see text). The parameters of the fitted logistic curve are

L50�37.6 cm and r�0.55 for 1995±1996 catch data, and

L50�38.5 cm and r�0.4 for all (1995±1997) catch data.
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variation in length at age, the decrease in numbers at

mean length (from one cohort to the next) is much

faster than the decrease in numbers, within a speci®c

cohort, from the mean length to neighboring classes

(as described by the rather ¯at-top of a normal dis-

tribution with a CVof 12%). The increase in the catch

of large ®sh in such cases (e.g. the ®rst points in

Fig. 8(a) compared to Fig. 7(a)) is therefore mainly

due to a `new' catch of big ®sh of later year-classes,

i.e. younger ®sh of which only the bigger ones have

grown to the size considered.

The model with size-dependent mortality does pro-

vide a good ®t to the tail of big steenbras in the catch

distribution (Fig. 9). In this model P[L�77.5 cm]�
0.00010, so on average, the catch of n�16 174 steen-

bras should comprise 1.6 ®sh of L�77.5 cm. In the

actual sample Lmax�ca. 80 cm. The number (X) of

®sh�80 cm in such samples is binomially distributed,

Bin(n, p80�); p80��P[L�80]�0.00004, so the prob-

ability of catching one or more of these large steenbras

is P[X�1]�1ÿP[X�0]�1ÿ(1ÿ0.00004)16174 or ca.

50%. Similarly the catch of ®sh�L1 is binomially

distributed with p70��0.0011, i.e. with mean

np70��18 and standard deviation (np70�(1ÿp70�))1/2

�4.2. Thus, according to the model, relating to a total

catch of 16 174 steenbras, (9, 25) is an approximative

95% con®dence interval for the number of ®sh, which

will be caught with a length greater or equal to L1. We

caught 18 (Fig. 1).

3.4.2. Sensitivity to changes and errors in the growth

parameters

In steady state, with constant L1 and no variation in

length at age (
�0), the size structure of the popula-

Fig. 7. Performance of the mortality estimation methods in steady state with no variation in length at age (
�0) but otherwise based on

simulations of the steenbras case. Left panel shows results in the size-dependent mortality scenario M1�0.3 yrÿ1 whereas the right panel

refers to the constant mortality scenario of M�0.4 yrÿ1. The four points (open circle) used for regression analyses represent the length range

45±55 cm: (a) M1-method: y�2.59x�7.66; (b) M-method: y�4.01xÿ10.6; (c) M-method: 3.78xÿ8.91; (d) M1-method: y�2.42x�7.83.
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tion is exclusively determined by M/K and M1/K in

the constant and size-speci®c mortality regimes,

respectively. For all practical purposes simulations

show that this result is also true with a considerable

variation in length at age. For example, with 
�0.1,

catch length frequencies and, hence, the regression

line Eq. (9), remain unaltered when a situation of

M1�0.3 yrÿ1 and K�0.1 yrÿ1 is changed into the

extreme situation of M1�1.2 and K�0.4 or

M1�0.15 and K�0.05 (e.g. the deviations in esti-

mated slopes are less than 1% (not shown)). All such

cases of M1/K�3 produce the same length-based

population dynamics. If only K is doubled, however,

K�0.2 yrÿ1 and M1�0.3 yrÿ1, the mortality-to-

growth rate ratio is halved, M1/K�1.5, which dras-

tically changes the length frequency distribution of the

sample (Fig. 10). The ®sh grow twice as fast (as in the

Fig. 8. Performance of the mortality estimation methods in steady state with a considerable variation in length at age simulating the steenbras

case (
�0.116). Left panel shows results in the size-dependent mortality scenario M1�0.3 yrÿ1 and right panel refers to the constant

mortality scenario of M�0.4 yrÿ1. The four points (open circle) used for regression analyses represent the length range 45±55 cm: (a) M1-

method: y�2.21x�7.45; (b) M-method: y�3.48xÿ8.89; (c) M-method: 3.08xÿ7.40; (d) M1-method: y�1.93x�7.49.

Fig. 9. Catch at length of steenbras (L. aureti)�40 cm sampled in

Meob Bay, Namibia, throughout 1995±1997 (bars). Equivalent

catch percentages (curve) are obtained with the model under

steady-state conditions in the size-dependent mortality regime

(M1�0.285, K�0.083, L1�70, 
�0.116, r�0.5, L50�38).

Lengths in 2.5 cm classes (numbers refer to lower class limits).
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K�0.1 case) and succeed in becoming bigger because

the mortality regime has not changed. If steenbras

were growing at this rate, we would expect

Lmax�88 cm and 375 ®sh�L1 in the 1995±1997

sample. Despite this faster growth rate, a considerable

overlap in the length ranges of consecutive age groups

still exists. The performance of the linearized catch

curve method, however, improves considerably

(Fig. 10(b)) mainly because of the impact of the

low mortality-to-growth ratio.

Another issue concerns the impact of possible errors

in the growth parameters used for the linear regres-

sions, Eqs. (6) and (9), on the estimation of mortality.

The growth parameter K only appears in the slopes of

these lines which implies that any relative error in K

produces exactly the same error on the mortality

estimate, (slope�1)K. For example, using a 20%

underestimate of K in interpreting the slope of the

line in Fig. 10(b) results also in a 20% underestimate

of M1. The equivalent situation for K�0.1 yrÿ1

results in a 25% underestimate of M1 because the

effect of the M1/K�3 (and 
�0.1) scenario is already

an underestimate of M1/K by 6.4% (not shown). The

other growth parameter, L1, appears only in the log-

calculation of the explanatory variables. An overesti-

mate of L1 causes therefore horizontal movements of

the points (to the right). The points will move towards

creating a concave curve with such increasing L1-

errors because the impact is largest on the biggest ®sh

close to the true L1 (e.g. the ®rst points in Fig. 8(a)

and (c)). Suppose, for example, L1�80 cm is (incor-

rectly) used for the mortality estimation in the M1-

scenario of Fig. 8(a) (which is truly generated with

L1�70 cm) then a perfectly straight line appears

(Fig. 11(a)). The convex shaped (caused by


�0.116) is in this case balanced out by the 14%

overestimation of L1. The equivalent straight-line-

situation to the M-scenario of Fig. 8(c) occurs when

L1�85 cm is (incorrectly) used (Fig. 11(b)). Both

situations turn the (
-contaminated) underestimates

of mortality (Fig. 8(a) and (c)) into overestimates

(8.5%, M1�0.33, Fig. 11(a); 34%, M�0.53,

Fig. 11(b)). In general the 
-effect can be counter-

acted by an appropriate L1-error. Simulations show

that using the (incorrect) value of L1, which produces

a straight line, improves the estimate of M1 (but not

the estimation of a constant M). When 1<M1/K<3 the


-effect is small (not exceeding a few percent), so only

a slight adjustment of L1 is needed for obtaining a

straight line. Note that for M1/K<ca. 1.5, the 
-effect

is a slight overestimate of M1/K so the adjustment

involves an underestimate of L1. When M1/K>3, the

bias (underestimate) of M1/K caused by high 
-values

is considerably reduced by this concept of a straight-

line-L1. For example, in case of a CV of 15%, the

underestimates (due to this 
�0.15) increase from

ÿ11% to ÿ25% when M1/K doubles from 3 to 6.

However, the overestimates by using straight-line-

L1's (81 and 93 cm, respectively) increase only from

8% to 11%. In these examinations, a straight-line-L1

Fig. 10. Steady-state catch representation with K�0.2 yrÿ1 and considerable variation in length at age (
�0.1) but otherwise simulating the

size-dependent mortality scenario M1�0.3 yrÿ1 in the steenbras case (Fig. 8(a) and (b)): (a) percentage catches at length in 2.5 cm classes

(numbers refer to lower class limits); (b) linearized catch curve: y�0.508x�6.52.
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was obtained as the (incorrect) value of L1 which

made the four-points-regression line (i.e. based on

range 45±55 cm; e.g. Figs. 7 and 8) coincide with

the eight-points-regression line (i.e. based on range

45±65 cm). Using all 10 points (45±70 cm) in the

steenbras case (Fig. 5(b)) gives the best straight-

line-®t for L1�80 cm resulting in M1�0.304 (not

shown). The equivalent case in the simulation model

(M1�0.285, K�0.083, L1�70, 
�0.116) yields

M1�0.307.

Simultaneous errors of opposite direction in the

estimation of K and L1 tend to cancel out in their

combined effect on the mortality estimate (Table 2).

In extremes situations, however, the errors may give

an additive effect. If the slope of the unbiased

linearized catch curve, Eq. (9), is negative (i.e. when

M1/K<1) then the effect of overestimating L1,

(which always creates a steeper line), becomes

one of underestimating M1/K that will add to the

effect of underestimating K. An example of such a

situation is M1/K�0.75; the additive error effect

pertains for all reasonable values of 
 (Table 2), but

a suf®ciently high 
-value can turn the line down to

horizontal level which neutralizes the impact of L1-

errors (e.g. in the M1/K�0.75 case, independently of

L1-errors, 
�0.25 implies virtually an unbiased esti-

mate of M1 when K is 20% underestimated (but

creates a 56% overestimate when K is 20% over-

estimated)). At the other extreme shown in Table 2,

M1/K�6, more than a 10% overestimate of L1 is

required to counterbalance the impact of 
 when


>0.05.

3.4.3. Sensitivity to recruitment variations

The issue concerning the impact of recruitment

variability on the performance of the M1-estimation

method is addressed with reference to a situation of

high M1/K ratio (the steenbras case; Fig. 7(a),

Fig. 8(a)) and to a situation of low M1/K ratio

(Fig. 10(b)). Annual recruitment to age zero (Sec-

tion 2.4) is considered log-normally distributed with

a CV of 50%. In the model, each realization of the

recruitment process therefore consists of a series of 51

recruitment numbers which represent values of iden-

tical and independently distributed (IID) random vari-

ables. Using each of such recruitment series as input,

the model delivers length-based catch sample and

related linearized catch curve analysis for the size-

dependent mortality regime considered (M1�0.3).

Assuming the catch sample refers to 1996, the recruit-

ment series refer to year-class strength for the years

1946±1996. Results are independent of the (constant)

level of mean annual recruitment. Results in terms of

which year-classes are important for estimating M1,

however, are not independent of t0.

For clari®cation the (unrealistic) situation of no

variation in length at age (
�0) is ®rst considered.

In the steenbras case (K�0.083, L1�70, t0�ÿ2.4) the

length range 45±55 cm was used for obtaining the

regression line (Fig. 7(a)). These size limits are

Fig. 11. Apparent excellent performance of the mortality estimation methods in steady state when L1 is overestimated. The scenaria refer to

the steenbrass case as in Fig. 8(a) and (c) (L1�70 cm, K�0.083 yrÿ1, 
�0.116, L50�38 cm, r�0.5 cmÿ1) with (a) M1�0.3 yrÿ1 and (b)

M�0.4 yrÿ1. The four points (open circle) used for regression analyses represent the length range 45±55 cm: (a) L1�80 cm incorrectly used

in M1-method: y�2.92x�6.90; (b) L1�85 cm incorrectly used in M-method: y�5.44x�17.5.
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reached at age 10 and 16 yr, so 1980±1986 are the

seven recruitment years of real importance. This was

con®rmed by simulation (the slope of the line in

Fig. 7(a) did not change when recruitment varied in

the years 1946±1979 and 1987±96). Simulations with

recruitment variations for 1980±1986 yielded M1-

estimates (using the same four points as in Fig. 7(a))

with a CV of 24% and mean �M1 � 0:29. Extending

the length range for the regressions to 10 classes, 40±

65 cm, and performing simulations with recruitment

variations in all years, 1946±1996, increased the pre-

cision (CV(M1)�4.7%, ( �M1 � 0:293; n�50 realiza-

tions).

With the considerable variation in length at age for

steenbras, 
�0.116, later (>1986) as well as earlier

(<1980) year-classes may contribute to the four-points

M1-estimation in Fig. 8(a). Considering 95%-con®-

dence limits to determine these contributions gives the

criteria Llower(1�2
)�45 and Lupper(1ÿ2
)�55 or

Llower�36.5 cm and Lupper�71.6 cm. Since on an

average ®sh attains 36.5 cm at age 6.5 yr, year-classes

1987±1989 will contribute to the catch of 45 cm or

bigger ®sh (right-tail effect) and since Lupper > �L1, all

year-classes before 1980 may potentially contribute to

the catch of 55 cm or smaller ®sh (left-tail effect). It

was con®rmed by simulation that the slope of the line

in Fig. 8(a) did not change when recruitment varied in

the years 1990±1996. Neither did recruitment varia-

tions for 1946±1979 affect the results (CV(M1)�
0.5%) because of the high mortality-to-growth ratio,

M1/K�3.6, i.e. negligible catches of smaller but older

®sh in the 45±55 cm domain. The performance of the

M1-estimation method in Fig. 8(a) is therefore deter-

mined by recruitment variations in 1980±1989. Simu-

lations show reasonable precision, CV(M1)�8.6%,

and high accuracy, �M1 � 0:267� 0:0023�SE�,

Table 2

Bias in M1-estimation due to 10% error in the estimate of L1 and an opposite 20% error in the estimate of K

Bias in estimation

M1-scenarioa �10% (L1) ÿ20% (K) ÿ10% (L1) �20% (K)


 M1/K K (yrÿ1) M1/Kb (%) M1 (%) M1/Kb (%) M1 (%)

0.025 6.0 0.05 16 ÿ7.1 ÿ23c ÿ7.2c

0.025 3.0 0.10 8.5d ÿ13d ÿ19d ÿ2.7d

0.025 1.5 0.20 5.7 ÿ15 ÿ11 7.1

0.025 0.75 0.40 ÿ12 ÿ30 7.2 29

0.05 6.0 0.05 11 ÿ11 ÿ25c ÿ10c

0.05 3.0 0.10 7.5d ÿ14d ÿ20d ÿ3.4d

0.05 1.5 0.20 6.1 ÿ15 ÿ11 7.4

0.05 0.75 0.40 ÿ13 ÿ30 6.7 28

0.1 6.0 0.05 ÿ1.9 ÿ22 ÿ31c ÿ17c

0.1 3.0 0.10 7.6 ÿ14 ÿ22d ÿ6.2d

0.1 1.5 0.20 8.4 ÿ13 ÿ9.2 8.9

0.1 0.75 0.40 ÿ15 ÿ32 5.3 26

0.125 6.0 0.05 ÿ7.3 ÿ26 ÿ34c ÿ20c

0.125 3.0 0.10 4.6 ÿ16 ÿ23d ÿ8.0d

0.125 1.5 0.20 9.9 ÿ12 ÿ8.3 10

0.125 0.75 0.40 ÿ9.8 ÿ28 8.6 30

Results are based on catch curve analyses with a size-dependent mortality regime (40±55 cm length range used for regressions). Underlying

catches at length are produced by the simulation model in steady state.
a L1�70 cm, M1�0.3 yrÿ1, r�0.5 cmÿ1, L50�38 cm.
b This dimensionless mortality-to-growth ratio is obtained as slope�1 from regressions using (incorrectly) either 77 or 63 cm for L1 (as

specified above). Multiplying with the biased estimate of K gives M1-estimate in the next column. Only percentage deviations from true

values are shown.
c Length range 40±50 cm used for regressions (due to shift in the mode).
d Length range 42.5±52.5 cm used for regressions.
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(n�100). Note that 0.267 is the 
-affected M1-

(under)estimate obtained with constant recruitment

(Fig. 8(a)). If the length range for the regressions

is doubled the precision improves at the cost of

less accuracy (CV(M1)�6.4%, �M1 � 0:253�
0:0023�SE�, (n�50), eight points (40±60 cm)).

Considering the situation of low mortality growth

ratio, M1/K�1.5, in Fig. 10 to represent 1996, the

basic catch contribution to length range 45±55 cm

comes from only three year-classes, 1989±1991, i.e.

ages 5±7 yr due to the higher growth rate (K�0.2,

t0�0). With 
�0.1 (Fig. 10(a)), however, ®sh bigger

than the average for ages 3±4 (1992±1993) and also

®sh smaller than the average for ages 8±9 (1987±1988)

are present in the population in suf®cient numbers to

contribute to the catches of 45±55 cm ®sh. The (usual

four-points) estimates of M1 change only slightly

when recruitment varies for the years 1994±1996

and 1946±1986 (CV(M1)�2.0%, n�40). Only the

seven years, 1987±1993 (ages 3±9 yr), are important

with respect to the impact of recruitment variability on

M1-estimation. The precision of the mortality esti-

mates (CV(M1)�29%, �M1 � 0:29� 0:012�SE�,
(n�50), four points (45±55 cm)) increases when the

length range for regression is doubled (CV(M1)�
17%, �M1 � 0:301� 0:0073�SE�, (n�50), eight

points (45±65 cm)).

3.5. Application of steenbras mortality analysis to

silver kob

The silver kob (A. inodorus) stock in Namibia is

currently being assessed using cohort analysis (e.g

Sparre and Venema, 1998). One of the input para-

meters required for a VPA is an estimate of the rate of

instantaneous natural mortality. This ®shery model is

very sensitive to changes in M when ®shing mortality

(F) is relatively small, such as for silver kob in

Namibian waters. For this application it is assumed

that westcoast steenbras and silver kob, of the same

size, die at approximately the same natural mortality

rate. This seems to be a reasonable assumption, as the

study of Lorenzen (1996) showed a good correlation

between mean weight and the natural mortality rate for

®sh living in a natural ecosystem i.e. any ®sh with a

certain weight will have approximately the same

natural mortality rate. Although westcoast steenbras

and silver kob are two different ®sh species which

have different growth rates and might differ in their

susceptibility to disease and senescence, this assump-

tion might be feasible since, as implied by Cushing

(1974) and Carpenter et al. (1985), the highest con-

tribution to natural mortality is predation. Westcoast

steenbras and silver kob basically share the same

habitat (viz. the surfzone from Meob Bay north to

Cape Frio (188260S, 128000E)) and are therefore

exposed to the same predators such as sharks and

fur seals.

Assuming that kob's natural mortality is governed

by a similar natural mortality pattern to that of west-

coast steenbras of approximately the same length, the

natural mortality of in®nite old kob (M1 kob) was

calculated as 0.2 yrÿ1 by using the following equation:

M1 kob � M1 steenbras � L1 Steenbras=L1 kob;

where M1 of westcoast steenbras is 0.29 yrÿ1 and

Fig. 12. Natural mortality at length for steenbras (L. aureti) and silver kob (A. inodorus) assuming these species are exposed to the same size-

specific predation mortality, M(L)�20/L, due to predation from e.g. sharks and fur seals, which is believed to constitute the main component of

natural mortality.
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L1�70 cm while L1 of kob is 103 cm (own data).

Fig. 12 shows size-speci®c natural mortality of kob

obtained in this way (i.e. Eq. (13)).

4. Conclusion and general discussion

An extremely simple size-speci®c model of natural

mortality is considered as an alternative to the usual

assumption of a constant value of natural mortality for

all sizes, M. Mortality is considered inversely propor-

tional to length and the model is completely speci®ed

by M1, the mortality at �L1, the mean length at old

age. This model can explain in detail the tailing-off in

the length frequencies of samples of mature ®sh from

an unexploited population of westcoast steenbras. It

accounts for high numbers of smaller ®sh in the

population and thus provides good descriptions of

the apparent selection ogive using the Pauly

(1984a) concept of resultant curve. In general the

model can explain the one in a million survival which

governs recruitment to most ®sh stocks (Beyer, 1989:

Example 1).

Simple, linearized and length-based catch curve

methods are presented to estimate the mortality-to-

growth ratios, M/K and M1/K, which determine the

length structure of the population in the constant and

size-speci®c mortality regimes, respectively. The

methods are developed under the traditional assump-

tions of steady-state conditions and no variations in

length at age, CV(L|age)�
�0, and furthermore

require that �L1 is known. Under these conditions

the methods result in precise and accurate ratio-esti-

mates. In general, however, lengths of individual ®sh

of the same age are characterized by a considerable

CV, probably around 10%, and the straight lines turn

into convex curves. Considering 10% precision cri-

teria and applying the methods with the insight gained

from simulations, the bias caused by this CV-effect is

not serious when 1<M1/K<3. Higher values of M1/K

lead to serious underestimates when CVexceeds 10%.

In general the bias can be reduced to acceptable limits

by applying the straight-line ± �L1 method, i.e. using

the value of �L1 which counteracts the CV-effect

thereby producing a straight line catch curve. This

is important because it allows for the estimation of the

fundamental length-based mortality concept, M1/K,

without prior knowledge on growth. Straightforward

modi®cations of `̀ the Jones length-based (pseudo)co-

hort analysis'' (Jones, 1976; Jones and van Zalinge,

1981; reviewed in Jones, 1984; Pauly, 1984b; and

Sparre and Venema, 1998) show that knowledge of

M1/K alone is suf®cient for carrying out length-based

VPA (steady state) for exploited stocks under various

L1-scenarios with size-speci®c natural mortality.

Thus total annual catch by length and an estimate

of M1/K constitute the minimum data requirement for

performing complete ®sh stock assessments and yield

predictions. Work on this important issue for tropical

®sh stock assessment and related CV-effects is in

progress.

4.1. Methods

The constant CV-growth model (Beyer and Lassen,

1994) provides in a ®rst approximation a description

of the combined effects of an extended spawning

season and individual variability in growth. CV

(�
) constitutes an important parameter of population

dynamics. Unfortunately, values of CV are seldom

reported in the literature although such values are

readily obtained (and available) for most stocks either

by analyzing length at age (Fig. 3) or from Bhatta-

charya analyses and related methods for splitting a

composite length distribution into separate normal

distributions (Sparre and Venema, 1998, and refer-

ences herein). Myers (1989) found an average CV of

ca. 12% for cod but also that CV tends to increase with

older age; a phenomenon which may have general

validity as e.g. individual-based stochastic simulation

models of growth often reveals this feature (e.g. Beyer

and Laurence, 1980). This may imply an even greater

CV-effect than demonstrated in this study. Although

the constant CV-growth model is not intended to

consider individual growth trajectories as smooth

VBGE-curves, the implication of the model is that

an individual of length L0i at age 0 attains length

Li�t� � L0i � �L�t�=�L0 at age t where �L�t� is the mean

length at age t in the cohort (Eq. (11)) and �L0 similarly

denotes the mean length at age 0. Thus, in the constant

CV model, individuals are considered to grow with the

same K but with individual values of L1 and they all

grow with the same speci®c growth rate (because the

relationship above implies Lÿ1
i dLi=dt � �L

ÿ1
d�L=dt�.

Disregarding very small ®sh it should be mentioned

that mean size at age for all practical purposes is not
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affected by the size-selective mortality used in this

study.

An important aim of this paper has been to use and

apply simple methods and deterministic models rather

than to optimize the various statistical estimation

procedures. It is clear that under more realistic

assumptions concerning the variation of individual

growth rates, estimation procedures for the growth

parameters can be improved (Sainsbury, 1980; Fran-

cis, 1988). The linearized catch curve, Eq. (9), also

possesses simplicity at the cost of introducing some

interdependency between x and y (created through the

dependency in both x and y on the class midlengths).

The effect of this type of x±y-interdependence (which

also occurs in many of the traditional methods of ®sh

stock assessment) can be neglected in most applica-

tions.

The (length-based) mortality estimation methods

are based on fewer approximations than the traditional

length-converted catch curve (Sparre and Venema,

1998). Our methods appear robust for most species

as Beverton and Holt (1959) found that the ratio M/K

mostly lies in the range of 1.5±2.5. The sensitivity of

M1-estimates to opposite errors in the estimates of K

and �L1 is relatively small (Table 2). This analysis is

based on `̀ the Pauly empirical phi-prime formula''

(e.g. Pauly and Munro, 1984), which can be expressed

as K / Lÿ2
1 (where the coef®cient of proportionality is

almost constant within closely related ®sh species).

Applying this formula to independent trials of esti-

mating the growth parameters based on different

length frequency samples for the same species (had

these been available) implies that e.g. a 10% over-

estimate of L1 is likely to be accompanied by a 20%

underestimate of K. The considerable recruitment

variations obtained with a CV of 50% is likely to

represent the right order of magnitude for most species

(Mertz and Myers, 1996). The mortality estimates are

relatively insensitive to this variation unless M1/K

attains low values in which case it is important to

stabilize the estimation procedure by including the

points representing the large ®sh (but<L1) in the

regression although these points are based on fewer

®sh. For large values of M1/K the estimation proce-

dure can instead be sensitive to the CV- or 
-effect but

then the straight-line-L1 method is recommended.

Note that this method does not work for the estimation

of M/K in case of constant mortality.

4.2. Case study

This study provides the ®rst estimates of growth and

mortality of westcoast steenbras reported in the lit-

erature. The only scienti®c ageing and growth study

done on westcoast steenbras in the past comprised 82

otolith readings by Lucks (1970). Unfortunately, the

underlying method of ageing was not documented

clearly and neither did Lucks (op.cit.) attempt to

obtain estimates of the growth parameters based on

his tentative age±length key. With ®sh attaining

lengths of 40 cm and more at age 1 and ca. 75 cm

at age 6 yr, his results indicate a growth rate which is at

least three times faster than we have estimated for

Meob Bay steenbras. It is understandable, however,

that the results by Lucks (op.cit.) would be somewhat

different from ours because he collected his steenbras

samples from a different population (Van der Bank

and Holtzhausen, unpublished genetic data). Consid-

ering mortality, it is not possible to make a clear

differentiation between the two regimes considered

(Fig. 5) although the M1-scenario appears slightly

more convincing than the M-scenario (i.e. by compar-

ing Figs. 5 and 8). This is because the differences

between applying true and false methods happen to be

very small for both scenarios in this case (Fig. 8(a) vs.

Fig. 8(d); Fig. 8(c) vs. Fig. 8(b)). Our present knowl-

edge of M1, K, �L1 and 
 conforms to the constant

CV-growth model, explains the observed Lmax and

provides an adequate description of the length struc-

ture for 40� cm in the 1995±1997 total sample of

more than 16 000 steenbras. The independent results

from tagging are also in agreement with these growth

estimates. As we, in the model, are considering K

constant but L1 to vary at the individual level, the

mark-recapture data in Table 1 could alternatively be

used to estimate 
 and �L1 assuming K ®xed (i.e.

solving Eq. (2) with respect to L1). This gives results

in good agreement with the age±length data, e.g.


�0.12 and �L1 � 69 (n�18) with K�0.08.

Several issues need further clari®cation. This

includes the relatively high (negative) value of t0
(ÿ2.4 yr for a long-lived species), seasonality in

growth as well as the bimodality in the length fre-

quencies for 1995 and 1997 (Fig. 1). The bimodality

can be explained by recruitment variations using the

simulation model (not shown). However, westcoast

steenbras is a protandrous species and it is likely that
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this complicated life history adds to the natural varia-

tions, in particular during immature growth and the

transient stages. The controversial issue of hook selec-

tivity also needs further experimentation and studying

in continuation of the present pilot experiment (Fig. 2)

although many authors do use the trawl-type of selec-

tion curves (e.g. Booth and Buxton, 1997; Grif®ths,

1997) as also suggested by the results from this study.

Work on these and related issues of the population

dynamics of westcoast steenbras is in progress.

The application of the steenbras mortality analysis

to other species sharing the same habitat (Section 3.5)

appears promising. Grif®ths (1997) determined

instantaneous natural mortality for the two South

African A. inodorus stocks by using relationships

among life history parameters (viz. Gunderson and

Dygert, 1988; Boudreau and Dickie, 1989; Hoening,

1983). He assumed that M is between 0.1 and 0.2 yrÿ1,

which seems to be a reasonable estimate as an input

parameter for the yield-per-recruit model, as ®shing

mortalities for the South African silver kob stocks are

high (e.g. ranging between 0.37 and 0.47). One of the

future objectives of the assessment of the Namibian

kob stock would be to investigate the effect that the

protection of young ®sh would have on the total

biomass. Therefore it is the value of M at the time

of recruitment that would be important, and currently

no information on the value of M, and in particular on

size-speci®c M, is available for silver kob off the

Namibian coast.

While e.g. the mark-recapture results indicate that

the Meob Bay area has a closed population of west-

coast steenbras, the same assumptions cannot be made

of the kob population. Recaptures recorded elsewhere

of kob marked-and-released in the Meob Bay area

suggest that part of (if not all) kob move out of the area

for at least a certain time of the year. Mark-and-release

surveys indicate that kob move out of the area with the

onset of winter in May/June, only to return with the

onset of summer in November/December. Therefore,

using `̀ catch curve analysis'' to estimate M, could not

be applied, as the estimate of Z would contain an

unknown migration coef®cient.

In conclusion, it can be said that traditionally in

most stock assessment models, only a `̀ guesstimate''

of average natural mortality is used currently in single-

species assessments. Such an assumption of size-

independent M is probably suf®cient where only the

adult stock is considered (in particular for smaller

species), but, being able to estimate natural mortality

for a certain size class, will improve the accuracy of

the assessment, in particular when dealing with a large

range of body-sizes for larger species (i.e. slow-grow-

ing and long-lived species).
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Appendix A

Relationships between mortality estimates

The linearized length-based catch curves, Eq. (6)

for M and Eq. (9) for M1, were derived as approx-

imations under the assumption that the impact of

variation in length at age can be neglected. In this

appendix these curves are considered to represent

exact relationships between catch at length (C) and

length (L) for the respective mortality regimes.First,

assuming that mortality is size-dependent as speci®ed

by Eq. (1), Eq. (9) states

ln�CL� � constant � �M1=K ÿ 1� ln�L1=Lÿ 1�
or by taking the logarithms,

ln C � constant � �M1=K ÿ 1� ln�L1 ÿ L�
ÿM1=K ln L;

where y�ln C is the dependent variable and

x�ln(L1ÿL) is the explanatory variable if the method

of constant M, Eq. (6), is (incorrectly) used. Hence

L�L1ÿex, so

y � constant � �M1=K ÿ 1�xÿM1=K ln�L1 ÿ ex�:
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The change in the slope of this curve is given by

dy

dx
� M1

K

L1
L
ÿ 1; L � L1 ÿ ex:

The minimum slope is M1/Kÿ1 and occurs when

L�L1. Thus, when the traditional constant M-method

expressed as

ln C � constant� �M=K ÿ 1� ln�L1 ÿ L�
is used in the size-dependent mortality regime, the

result becomes a convex curve with slope that re¯ects

this increase in mortality for the smaller ®sh, i.e. the

slope of the curve starts by producing the minimum,

M�M1 for the very large ®sh, but then increases,

M�M1L1/L, as L decreases (Fig. 7(b)). In practice,

however, it is not feasible to use the minimum slope

for estimating M1 because of the impact of CV>0 (for

length at age) (Fig. 8(b)) and the uncertainty in the

catch representation of the larger ®sh in the popula-

tion. Instead it is better to consider the other extreme

where the impact of the unavoidable variation in

length at age (i.e. 
>0) is minimum and use the

maximum slope (occurring for small but fully

recruited ®sh), i.e. M1 � K�1�maximum

slope��Lrepr=L1 where �Lrepr denotes the representative

mid-length for the small ®sh used in the M-regression.

Similar considerations apply to a constant mortality

regime if the size-dependent M1-regression is

(incorrectly) used. In this case, y�ln(CL) and x�
ln(L1/Lÿ1), the slope becomes

dy

dx
� M

K

L

L1
ÿ 1; L � L1=�1� exp�x��;

which produces a concave curve (Fig. 7(d)). The

maximum slope (occurring for very large ®sh) repre-

sents the correct mortality, M1�M, but as L decreases

the slope must also decrease to produce smaller

M1�ML/L1 which re¯ects the constant (size-inde-

pendent) mortality.

References

Benneth, B.A., 1993. Aspects of the biology and life history of

white steenbras Lithognatus lithognatus in southern Africa. S.

Afr. J. mar. Sci. 13, 83±96.

Beverton, R.J.H., Holt, S.J., 1959. A review of the lifespans and

mortality rates of fish in nature, and their relation to growth and

other physiological characteristics. In: Wolstenholme, G.E.W.,

O'Connor, M. (Eds.), CIBA Foundation, Colloquia on Ageing,

vol. 5. The Lifespan of Animals. London, Churchill, pp. 142±

180.

Beyer, J.E., 1989. Recruitment stability and survival ± simple size-

specific theory with examples from the early life dynamics of

marine fish. Dana 7, 45±147.

Beyer, J.E., Lassen, H., 1994. The effect of size-selective mortality

on the size-at-age of Baltic herring. Dana 10, 203±234.

Beyer, J.E., Laurence, G.C., 1980. A stochastic model of larval fish

growth. Ecol. Modelling 8, 109±132.

Booth, A.J., Buxton, C.D., 1997. Management of the panga

Pterogymnus laniarius (Pisces: Sparidae) on the Algulhas

Bank, South Africa using per-recruit models. Fish. Res. 32, 1±11.

Boudreau, P.R., Dickie, L.M., 1989. Biological model of fisheries

production based on physiological and ecological scalings of

body size. Can. J. Aquat. Sci. 16, 614±623.

Buxton, C.D., Clarke, J.R., 1989. The growth of Cymatoceps

nasutus (Teleostei: Sparidae), with comments on diet and

reproduction. S. Afr. J. mar. Sci. 8, 57±65.

Carpenter, S.R., Kitchell, J.F., Hodgson, J.R., 1985. Cascading

trophic interactions and lake productivity. Bioscience 35, 634±

639.

Cushing, D.H., 1974. The possible density-dependence of larval

mortality and adult mortality in fishes. In: Blaxter, J.H.S. (Ed.),

The Early Life History of Fish. Springer, New York, pp. 103±

111.

Francis, R.I.C.C., 1988. Are growth parameters estimated from

tagging and age- length data comparable? Can. J. Fish. Aquat.

Sci. 45, 936±942.

Griffiths, M.H., 1997. The application of per-recruit models to

Argyrosomus inodorus, an important South African sciaenid

fish. Fish. Res. 30, 103±115.

Gunderson, D.R., Dygert, P.H., 1988. Reproductive effort as a

predictor of natural mortality rate. J. Cons. Ciem 44, 200±209.

Hoening, J.M., 1983. Empirical use of longevity data to estimate

mortality rates. Fish. Bull. US 82, 898±903.

Jensen, A.L., 1996. Beverton and Holt life history invariants result

from optimal trade-off of reproduction and survival. Can. J.

Fish. Aquat. Sci. 53, 820±822.

Jones, R., 1976. Mesh regulation in the demersal fisheries of the

South China Sea area. Manila, South China Sea Fisheries

Development and Coordinating Programme, SCS/76/WP/34:

75 pp.

Jones, R., 1984. Assessing the effects of changes in exploitation

pattern using length composition data (with notes on VPA and

cohort analysis). FAO Fish. Tech. Pap. (256): 118 pp.

Jones, R., van Zalinge, N.P., 1981. Estimates of mortality rate and

populaion size for shrimp in Kuwait waters. Kuwait Bull. Mar.

Sci. 2, 273±288.

Lorenzen, K., 1996. The relationship between body weight and

natural mortality in juvenile and adult fish: a comparison of

natural ecosystems and aquaculture. J. Fish Biol. 49(4), 627±

647.

Lucks, D.K., 1970. Aspects of the biology of the white steenbras

(Lithognathus aureti Smith, 1962) in the Sandwich estuary.

Unpublished M.Sc. Thesis, University of Stellenbosch, Stel-

lenbosch: 1-49. (In Afrikaans).

152 J.E. Beyer et al. / Fisheries Research 41 (1999) 133±153



Mertz, G., Myers, R.A., 1996. Influence of fecundity on

recruitment variability of marine fish. Can. J. Fish. Aquat.

Sci. 53, 1618±1625.

Myers, R.A., 1989. Estimating bias in growth caused by size-

selective fishing mortality. ICES C.M. 1989/D: 8: 13 pp.

Pauly, D., 1980. On the interrelationships between natural

mortality, growth parameters, and mean environmental tem-

perature in 175 fish stocks. J. Cons. Ciem. 39(2), 175±192.

Pauly, D., 1984a. Length-converted catch curves. A powerful tool

for fisheries research in the tropics. (Part II). ICLARM Fishbyte

2 (1), 17±19.

Pauly, D., 1984b. Fish population dynamics in tropical waters: a

manual for use with programmable calculators. ICLARM Stud.

Rev. (8), 325 pp.

Pauly, D., Munro, J.L., 1984. Once more on the comparison of

growth in fish and invertebrates. ICLARM Fishbyte 2(1), 21.

Peterson, I., Wroblewski, S.J., 1984. Mortality rate of fishes in the

pelagic ecosystem. Can. J. Fish. Aquat. Sci. 41, 1117±1120.

Ricker, W.E., 1969. Effects of size-selective mortality and

sampling bias on estimates of growth, mortality, production,

and yield. J. Fish. Res. Board Can. 26, 479±541.

Rikhter, V.A., Efanov, V.N., 1976. On one of the approaches to

estimation of natural mortality of fish population. ICNAF Res.

Doc. 76/VI/8, 12 pp.

Sainsbury, K.J., 1980. Effect of individual variability on the von

Bertalanffy growth equation. Can. J. Fish. Aquat. Sci. 37, 241±

247.

Sparre, P., Venema, S.C., 1998. Introduction to tropical fish stock

assessment. Part 1. Manual FAO Fish. Tech. Pap. No. 306/1,

Rev 2: 407 pp.

Vetter, E.F., 1988. Estimation of natural mortality in fish stocks: A

review. Fish. Bull. 86(1), 25±43.

Ware, D.M., 1975. Relation between egg size, growth and natural

mortality of larval fish. J. Fish. Res. Bd. Can. 32, 2503±2512.

J.E. Beyer et al. / Fisheries Research 41 (1999) 133±153 153


